Cart (Loading....) | Create Account
Close category search window
 

Clock Buffer Polarity Assignment for Power Noise Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Samanta, R. ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX ; Venkataraman, G. ; Jiang Hu

Power/ground noise is a major source of VLSI circuit timing variations. This work aims to reduce clock network induced power noise by assigning different signal polarities (opposite switchings) to clock buffers in an existing buffered clock tree. Three assignment algorithms are proposed: 1) partitioning; 2) 2-coloring on minimum spanning tree; and 3) recursive min-matching. A post-processing of clock buffer sizing is performed to achieve desired clock skew. SPICE based experimental results indicate that our techniques could reduce the average peak current and average delay variations by 50% and 51%, respectively.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:17 ,  Issue: 6 )

Date of Publication:

June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.