Cart (Loading....) | Create Account
Close category search window
 

Advance Reservations and Scheduling for Bulk Transfers in Research Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rajah, K. ; VMware, Sunnyvale, CA, USA ; Ranka, S. ; Xia, Y.

Data-intensive e-science collaborations often require the transfer of large files with predictable performance. To meet this need, we design novel admission control (AC) and scheduling algorithms for bulk data transfer in research networks for e-science. Due to their small sizes, the research networks can afford a centralized resource management platform. In our design, each bulk transfer job request, which can be made in advance to the central network controller, specifies a start time and an end time. If admitted, the network guarantees to complete the transfer before the end time. However, there is flexibility in how the actual transfer is carried out, that is, in the bandwidth assignment on each allowed path of the job on each time interval, and it is up to the scheduling algorithm to decide this. To improve the network resource utilization or lower the job rejection ratio, the network controller solves optimization problems in making AC and scheduling decisions. Our design combines the following elements into a cohesive optimization-based framework: advance reservations, multipath routing, and bandwidth reassignment via periodic reoptimization. We evaluate our algorithm in terms of both network efficiency and the performance level of individual transfer. We also evaluate the feasibility of our scheme by studying the algorithm execution time.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:20 ,  Issue: 11 )

Date of Publication:

Nov. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.