By Topic

Decoupled root-MUSIC algorithm for Multidimensional Harmonic retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Remy Boyer ; Laboratiore des Signaux et Systèmes (L2S), CNRS, Université Paris-Sud XI (UPS), SUPELEC, France

In this paper, we propose a decoupled root-MUSIC algorithm adapted to the multidimensional harmonic model, which is widely used in MIMO channel sounding. The optimization criterion of the proposed algorithm is based on multidimensional orthogonal condition testings between a tensor steering manifold parameterized by the parameters of interest and a set of orthogonal projectors associated with each dimension. This criterion can be viewed as a set of decoupled estimation subproblems and allows the use of fast polynomial rooting techniques. In consequence, the proposed algorithm is highly scalable, parallelizable and avoids costly enumerative-based search. However, decoupling property implies to correctly pair the estimated model parameters. So, we propose a fast automatic pairing procedure based on the exploitation of the Vandermonde-structure preserving property of the alternating least squares candecomp/parafac (ALS-CP) algorithm. In addition, we study in a first time the case of a single snapshot and we generalize our algorithm to the multiple snapshots scenario. Finally, by means of numerical simulations, we show that the proposed scheme is efficient for one order of magnitude less complex than other standard algorithms.

Published in:

2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications

Date of Conference:

6-9 July 2008