By Topic

Constrained Tensor Modeling Approach to Blind Multiple-Antenna CDMA Schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
AndrÉ L. F. de Almeida ; Centre Nat. de la Rech. Sci., Univ. of Nice Sophia Antipolis, Sophia Antipolis ; GÉrard Favier ; JoÃo Cesar M. Mota

In this paper, we consider an uplink multiple-antenna code-division multiple-access (CDMA) system linking several multiple-antenna mobile users to one multiple-antenna base station. For this system, a constrained third-order tensor decomposition is introduced for modeling the multiple-antenna transmitter as well as the received signal. The constrained structure of the proposed tensor decomposition is characterized by two constraint matrices that have a meaningful physical interpretation in our context. They can be viewed as canonical allocation matrices that define the allocation of users' data streams and spreading codes to the transmit antennas. The distinguishing features of the proposed tensor modeling with respect to the already existing tensor-based CDMA models are: i) it copes with multiple transmit antennas and spreading codes per user and ii) it models several spatial spreading/multiplexing schemes with multiple spreading codes by controlling the constrained structure of the tensor signal model. A systematic design procedure for the canonical allocation matrices leading to a unique blind symbol (or joint blind symbol-code) recovery is proposed which allows us to derive a finite set of multiple-antenna schemes for a fixed number of transmit antennas. Identifiability of the proposed tensor model is discussed, and a blind multiuser detection receiver based on the alternating least squares algorithm is considered for performance evaluation of several multiple-antenna CDMA schemes derived from the constrained modeling approach.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 6 )