By Topic

Thermally Processed High-Mobility MOS Thin-Film Transistors on Transferable Single-Crystal Elastically Strain-Sharing Si/SiGe/Si Nanomembranes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Demonstration of high-performance MOS thin-film transistors (TFTs) on elastically strain-sharing single-crystal Si/SiGe/Si nanomembranes (SiNMs) that are transferred to foreign substrates is reported. The transferable SiNMs are realized by first growing pseudomorphic SiGe and Si layers on silicon-on-insulator (SOI) substrates, and then, selectively removing the buried oxide (BOX) layer from the SOI. Before the release, only the SiGe layer is compressively strained. Upon release, part of the compressive strain in the SiGe layer is transferred to the thin Si layers, and the Si layers, thus, become tensile strained. Both the initial compressive strain state in the SiGe layer and the final strain sharing state between the SiGe and the Si layers are verified with X-ray diffraction measurements. The TFTs are fabricated employing the conventional high-temperature MOS process on the strain-shared SiNMs that are transferred to an oxidized Si substrate. The transferred strained-sharing SiNMs show outstanding thermal stability and can withstand the high-temperature TFT process on the new host substrate. The strained-channel TFTs fabricated on the new host substrate show high current drive capability and an average electron effective mobility of 270 cm2/V ldr s. The results suggest that transferable and thermally stable single-crystal elastically strain- sharing SiNMs can serve as excellent active material for high-speed device application with a simple and scalable transfer method. The demonstration of MOS TFTs on the transferable nanomembranes may create the opportunity for future high-speed Si CMOS heterogeneous integration on any substrate.

Published in:

IEEE Transactions on Electron Devices  (Volume:55 ,  Issue: 3 )