By Topic

Rateless Forward Error Correction for Topology-Transparent Scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Topology-transparent scheduling for mobile wireless ad hoc networks has been treated as a theoretical curiosity. This paper makes two contributions towards its practical deployment: (1) We generalize the combinatorial requirement on the schedules and show that the solution is a cover-free family. As a result, a much wider number and variety of constructions for schedules exist to match network conditions. (2) In simulation, we closely match the theoretical bound on expected throughput. The bound was derived assuming acknowledgments are available immediately. We use rate less forward error correction (RFEC) as an acknowledgment scheme with minimal computational overhead. Since the wireless medium is inherently unreliable, RFEC also offers some measure of automatic adaptation to channel load. These contributions renew interest in topology-transparent scheduling when delay is a principal objective.

Published in:

IEEE/ACM Transactions on Networking  (Volume:16 ,  Issue: 2 )