By Topic

Graph-Based Semi-Supervised Learning and Spectral Kernel Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rie Johnson ; RJ Res. Consulting, Tarrytown ; Tong Zhang

In this paper, we consider a framework for semi-supervised learning using spectral decomposition-based unsupervised kernel design. We relate this approach to previously proposed semi-supervised learning methods on graphs. We examine various theoretical properties of such methods. In particular, we present learning bounds and derive optimal kernel representation by minimizing the bound. Based on the theoretical analysis, we are able to demonstrate why spectral kernel design based methods can improve the predictive performance. Empirical examples are included to illustrate the main consequences of our analysis.

Published in:

IEEE Transactions on Information Theory  (Volume:54 ,  Issue: 1 )