By Topic

Context-Dependent DNA Coding With Redundancy and Introns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peng Xiao ; Huazhong Univ. of Sci. & Technol., Wuhan ; Vadakkepat, P. ; Tong Heng Lee

Deoxyribonucleic acid (DNA) coding methods determine the meaning of a certain character in individual chromosomes by the characters surrounding it. The meaning of each character is context dependent, not position dependent. Although position-dependent coding is most commonly used in genetic algorithms (GAs), a context-dependent coding formation is in fact more closer to the natural DNA chromosome. With the context dependency, the DNA coding methods allow intron parts, redundancy, and variable string length in encoded strings while remaining compatible with the standard genetic operations. This paper tries to explicitly explore the influence of those special features of the DNA coding scheme. Two fundamental DNA coding methods (with and without the use of introns) are constructed and compared with the integer coding method, which lacks the features of interest. The performance of the proposed DNA coding methods is analyzed through the robot soccer role assignment problem. The context-dependent coding exhibits the advantages in handling the negative effect of epistasis. The redundancy and intron parts are helpful in preventing useful schemata from disruption and in increasing the population diversity. The variable length of the individual string enables GAs to evolve both the size and the structure of the fuzzy rule base.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:38 ,  Issue: 2 )