By Topic

Protein Folding in Simplified Models With Estimation of Distribution Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Santana, R. ; Intell. Syst. Group, Univ. of the Basque Country, San Sebastian-Donostia ; Larranaga, P. ; Lozano, J.A.

Simplified lattice models have played an important role in protein structure prediction and protein folding problems. These models can be useful for an initial approximation of the protein structure, and for the investigation of the dynamics that govern the protein folding process. Estimation of distribution algorithms (EDAs) are efficient evolutionary algorithms that can learn and exploit the search space regularities in the form of probabilistic dependencies. This paper introduces the application of different variants of EDAs to the solution of the protein structure prediction problem in simplified models, and proposes their use as a simulation tool for the analysis of the protein folding process. We develop new ideas for the application of EDAs to the bidimensional and tridimensional (2-d and 3-d) simplified protein folding problems. This paper analyzes the rationale behind the application of EDAs to these problems, and elucidates the relationship between our proposal and other population-based approaches proposed for the protein folding problem. We argue that EDAs are an efficient alternative for many instances of the protein structure prediction problem and are indeed appropriate for a theoretical analysis of search procedures in lattice models. All the algorithms introduced are tested on a set of difficult 2-d and 3-d instances from lattice models. Some of the results obtained with EDAs are superior to the ones obtained with other well-known population-based optimization algorithms.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:12 ,  Issue: 4 )