Cart (Loading....) | Create Account
Close category search window

Coding Strategies for Multiple-Access Channels With Feedback and Correlated Sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ong, L. ; Nat. Univ. of Singapore, Singapore ; Motani, M.

The multiple-access channel with feedback and correlated sources (MACFCS) models a sensor network in which sensors collect and transmit correlated data to a common sink. We present four achievable rate regions and a capacity outer bound for the MACFCS. For the first achievable region, we construct a decode-forward based coding strategy. The sources first exchange their data, and then cooperate to send full information to the destination. We term this strategy full decoding at sources with decode-forward (FDS-DF). For two of the other achievable regions, we first perform Slepian-Wolf coding to remove the correlation among the source data. This is followed by either (i) a compress-forward based coding strategy for the multiple-access channel with feedback, or (ii) an existing coding strategy for the multiple-access channel. We also find another achievable region using a multihop coding strategy, which only uses point-to-point coding (no cooperation). From numerical computations, we see that different strategies perform better under certain source correlation structures and network topologies. More specifically, FDS-DF approaches the capacity when (i) the inter-source distance decreases, or (ii) the correlation among the sources gets higher. Furthermore, the cooperative coding strategies considered support larger achievable rate regions than the noncooperative multihop strategy.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 10 )

Date of Publication:

Oct. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.