By Topic

A Comparative Analysis of Depth-Discontinuity and Mixed-Pixel Detection Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pingbo Tang ; Carnegie Mellon Univ., Pittsburgh ; Huber, D. ; Akinci, B.

Laser scanner measurements are corrupted by noise and artifacts that can undermine the performance of registration, segmentation, surface reconstruction, recognition, and other algorithms operating on the data. While much research has addressed laser scanner noise models, comparatively little is known about other artifacts, such as the mixed pixel effect, color-dependent range biases, and specular reflection effects. This paper focuses on the mixed pixel effect and the related challenge of detecting depth discontinuities in 3D data. While a number of algorithms have been proposed for detecting mixed pixels and depth discontinuities, there is no consensus on how well such algorithms perform or which algorithm performs best. This paper presents a comparative analysis of five mixed-pixel/discontinuity detection algorithms on real data sets. We find that an algorithm based on the surface normal angle has the best overall performance, but that no algorithm performs exceptionally well. Factors influencing algorithm performance are also discussed.

Published in:

3-D Digital Imaging and Modeling, 2007. 3DIM '07. Sixth International Conference on

Date of Conference:

21-23 Aug. 2007