Cart (Loading....) | Create Account
Close category search window
 

How to Fit In Another Meeting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Klein, Rolf ; Inst. of Comput. Sci., Bonn Univ. ; Nussbaum, D. ; Rudiger Sack, J. ; Yi, Jiehua

We are studying the problem of determining suitable meeting times and locations for a group of participants wishing to schedule a new meeting subject to already scheduled meetings possibly held at a number of different locations. Each participant must be able to reach the new meeting location, attend for the entire duration, and reach the next meeting location on time. In particular, we give a solution to the problem instance where each participant has two scheduled meetings separated by a free time interval. For a geometric model, where n participants can travel along straight paths in the Euclidean plane, we present an O(n log n) algorithm to determine the longest meeting duration and a location suitable to all participants. In a graph-based model, transportation is provided by a geometric network over m nodes and e edges in the plane. Participants can have individual weights. Moreover, there can be k groups of participants, such that only one member of each group must attend the meeting. In this model, a location for a meeting of longest possible duration can be determined in time O(enalpha(k) log k + n log n + mn log m), where alpha(k) denotes the extremely slowly growing inverse Ackermann function

Published in:

Collaborative Computing: Networking, Applications and Worksharing, 2006. CollaborateCom 2006. International Conference on

Date of Conference:

17-20 Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.