By Topic

Nonmyopic Multiaspect Sensing With Partially Observable Markov Decision Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shihao Ji ; Dept. of Electr. & Comput. Eng, Duke Univ., Durham, NC ; Parr, R. ; Carin, L.

We consider the problem of sensing a concealed or distant target by interrogation from multiple sensors situated on a single platform. The available actions that may be taken are selection of the next relative target-platform orientation and the next sensor to be deployed. The target is modeled in terms of a set of states, each state representing a contiguous set of target-sensor orientations over which the scattering physics is relatively stationary. The sequence of states sampled at multiple target-sensor orientations may be modeled as a Markov process. The sensor only has access to the scattered fields, without knowledge of the particular state being sampled, and, therefore, the problem is modeled as a partially observable Markov decision process (POMDP). The POMDP yields a policy, in which the belief state at any point is mapped to a corresponding action. The nonmyopic policy is compared to an approximate myopic approach, with example results presented for measured underwater acoustic scattering data

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 6 )