By Topic

A Processor-In-Memory Architecture for Multimedia Compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper presents the design and development of a novel, low-complexity processor-in-memory (PIM) architecture for image and video compression. By integrating a novel-processing element with SRAM, bandwidth is improved and latency is greatly reduced. This paper also presents PIM design techniques for reduced power, area, and complexity for rapid deployment and reduced cost. A design methodology is presented and followed by an analysis of the processing element performance and capabilities. The proposed datapath solution delivers between 2 to 40 times higher performance compared to other presented solutions. The architecture executes a discrete cosine and wavelet transforms achieving up to 40% higher throughput per watt and occupying as little as 0.9% area compared to a commercial digital signal processing and other application-specified integrated circuit implementations while maintaining precision. A comprehensive comparative analysis is also provided. The proposed processor-in-memory is implemented in 1.8-V 0.18-mum CMOS technology and operates with a 300-MHz clock

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:15 ,  Issue: 4 )