Cart (Loading....) | Create Account
Close category search window
 

Spatially Coherent Nonlinear Dimensionality Reduction and Segmentation of Hyperspectral Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mohan, A. ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN ; Sapiro, G. ; Bosch, E.

The nonlinear dimensionality reduction and its effects on vector classification and segmentation of hyperspectral images are investigated in this letter. In particular, the way dimensionality reduction influences and helps classification and segmentation is studied. The proposed framework takes into account the nonlinear nature of high-dimensional hyperspectral images and projects onto a lower dimensional space via a novel spatially coherent locally linear embedding technique. The spatial coherence is introduced by comparing pixels based on their local surrounding structure in the image domain and not just on their individual values as classically done. This spatial coherence in the image domain across the multiple bands defines the high-dimensional local neighborhoods used for the dimensionality reduction. This spatial coherence concept is also extended to the segmentation and classification stages that follow the dimensionality reduction, introducing a modified vector angle distance. We present the underlying concepts of the proposed framework and experimental results showing the significant classification improvements

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:4 ,  Issue: 2 )

Date of Publication:

April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.