By Topic

Protein Subcomplexes—Molecular Machines With Highly Specialized Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hollunder, J. ; Leibniz Inst. for Age Res., Fritz Lipmann Inst., Jena ; Beyer, A. ; Wilhelm, T.

Complex cellular processes are accomplished by the concerted action of hierarchically organized functional modules. Protein complexes are major components which act as highly specialized molecular machines. Here we present a statistical procedure to find insightful substructures in protein complexes based on large-scale protein complex data: we identify statistically significant common protein subcomplexes (SCs) contained in different protein complexes. We analyze recently published data of the two model organisms Saccharomyces cerevisiae (four different data sets) and Escherichia coli, as well as human protein complex data. Our method identifies well-characterized protein assemblies with known functions which act as own functional entities in the cell. In addition, we also identified hitherto unknown functional entities that should be studied experimentally in future. We discuss two typical properties of protein subcomplexes: 1) subcomplexes are enriched with essential proteins (which implies that the whole SCs may be strongly conserved) and 2) SCs are functionally and spatially more homogeneous than the experimentally found protein assemblies. The latter property is exploited to propose functions for so far unknown proteins of S. cerevisiae

Published in:

NanoBioscience, IEEE Transactions on  (Volume:6 ,  Issue: 1 )