By Topic

Kolmogorov complexity, Optimization and Hardness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Borenstein, Y. ; Department of Computer Science, University of Essex, UK, yboren@essex.ac.uk ; Poli, R.

The Kolmogorov complexity (KC) of a string is defined as the length of the shortest program that can print that string and halts. This measure of complexity is often used in optimization to indicate expected function difficulty. While it is often used, there are known counterexamples. This paper investigates the applicability of KC as an estimator of problem difficulty for optimization in the black box scenario. In particular we address the known counterexamples (e.g., pseudorandom functions, the NIAH) and explore the connection of KC to the NFLTs. We conclude that high KC implies hardness however, while easy fitness functions have low KC the reverse is not necessarily true.

Published in:

Evolutionary Computation, 2006. CEC 2006. IEEE Congress on

Date of Conference:

0-0 0