Cart (Loading....) | Create Account
Close category search window
 

Optimizing bandwidth limited problems using one-sided communication and overlap

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bell, C. ; Comput. Sci. Div., California Univ., Berkeley, CA ; Bonachea, D. ; Nishtala, R. ; Yelick, K.

This paper demonstrates the one-sided communication used in languages like UPC can provide a significant performance advantage for bandwidth-limited applications. This is shown through communication microbenchmarks and a case-study of UPC and MPI implementations of the NAS FT benchmark. Our optimizations rely on aggressively overlapping communication with computation, alleviating bottlenecks that typically occur when communication is isolated in a single phase. The new algorithms send more and smaller messages, yet the one-sided versions achieve > 1.9times speedup over the base Fortran/MPI. Our one-sided versions show an average 15% improvement over the two-sided versions, due to the lower software overhead of onesided communication, whose semantics are fundamentally lighter-weight than message passing. Our UPC results use Berkeley UPC with GASNet and demonstrate the scalability of that system, with performance approaching 0.5 TFlop/s on the FT benchmark with 512 processors

Published in:

Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International

Date of Conference:

25-29 April 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.