By Topic

Novel dual-metal gate technology using Mo-MoSix combination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tzung-Lin Li ; Inst. of Electron., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Wu-Lin Ho ; Hung-Bin Chen ; Wang, H.C.-H.
more authors

A novel dual-metal gate technology that uses a combination of Mo-MoSix gate electrodes is proposed. An amorphous-Si/Mo stack was fabricated as a gate electrode for the n-channel device. It was thermally annealed to form MoSix. Pure Mo served as the gate electrode for the p-channel device. The work functions of MoSix and pure Mo gates on SiO2 are 4.38 and 4.94 eV, respectively, which are appropriate for devices with advanced transistor structures. The small increase in the work function (< 20 meV) and the negligible equivalent oxide thickness variation (< 0.08 nm) after rapid thermal annealing at 950 °C for 30 s also demonstrate the excellent thermal stabilities of Mo and MoSix on SiO2. Additional arsenic ion implantation prior to silicidation was demonstrated further to lower the work function of MoSix to 4.07 eV. This approach for modulating the work function makes the proposed combination of Mo-MoSix gate electrodes appropriate for conventional bulk devices. The developed dual-metal-gate technology on HfO2 gate dielectric was also evaluated. The effective work functions of pure Mo and undoped MoSix gates on HfO2 are 4.89 and 4.34 eV, respectively. A considerable work-function shift was observed on the high-κ gate dielectric. The effect of arsenic preimplantation upon the work function of the metal silicide on HfO2 was also demonstrated, even though the range of modulation was a little reduced.

Published in:

Electron Devices, IEEE Transactions on  (Volume:53 ,  Issue: 6 )