By Topic

Placement of thermal vias in 3-D ICs using various thermal objectives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Goplen, B. ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Sapatnekar, S.S.

As thermal problems become more evident, new physical design paradigms and tools are needed to alleviate them. Incorporating thermal vias into integrated circuits (ICs) is a promising way of mitigating thermal issues by lowering the effective-thermal resistance of the chip. However, thermal vias take up valuable routing space, and therefore, algorithms are needed to minimize their usage while placing them in areas where they would make the greatest impact. With the developing technology of three-dimensional integrated circuits (3-D ICs), thermal problems are expected to be more prominent, and thermal vias can have a larger impact on them than in traditional two-dimensional integrated circuits (2-D ICs). In this paper, thermal vias are assigned to specific areas of a 3-D IC and used to adjust their effective-thermal conductivities. The method, which uses finite-element analysis (FEA) to calculate temperatures quickly during each iteration, makes iterative adjustments to these thermal conductivities in order to achieve a desired thermal objective and is general enough to handle a number of different thermal objectives such as achieving a desired maximum operating temperature. With this method, 49% fewer thermal vias are needed to obtain a 47% reduction in the maximum temperatures, and 57% fewer thermal vias are needed to obtain a 68% reduction in the maximum thermal gradients than would be needed using a uniform distribution of thermal vias to obtain these same thermal improvements. Similar results were seen for other thermal objectives, and the method efficiently achieves its thermal objective while minimizing the thermal-via utilization.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:25 ,  Issue: 4 )