By Topic

Evolutionary multi-objective optimization: a historical view of the field

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Coello Coello, Carlos A. ; CINVESTAV-IPN, Mexico

This article provides a general overview of the field now known as "evolutionary multi-objective optimization," which refers to the use of evolutionary algorithms to solve problems with two or more (often conflicting) objective functions. Using as a framework the history of this discipline, we discuss some of the most representative algorithms that have been developed so far, as well as some of their applications. Also, we discuss some of the methodological issues related to the use of multi-objective evolutionary algorithms, as well as some of the current and future research trends in the area.

Published in:

Computational Intelligence Magazine, IEEE  (Volume:1 ,  Issue: 1 )