Cart (Loading....) | Create Account
Close category search window
 

Silicon-based nanomembrane materials: the ultimate in strain engineering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)

The lattice-mismatch-induced strain in growth of Ge on Si produces a host of exciting scientific and technological consequences, both in 3D nanostructure formation and, when silicon-on-insulator (SOI) is used as a substrate, in 2D membrane fabrication. One can use the ideas of strain sharing and critical thickness, combined with the ability to release the top layers of SOI, to create freestanding, dislocation-free, elastically strain relieved flexible Si/Ge membranes with nanometer scale thickness, which we call NanoFLEXSi or Si nanomembranes (SiNMs). The membranes can be transferred to new substrates, producing the potential for novel heterogeneous integration. The very interesting, and in some cases surprising, structural and electronic properties of these very thin membranes have been revealed using STM, X-ray diffraction, and electronic transport measurements. For example, STM shows that conduction in very thin Si layers on SOI with bulk-Si mobilities is possible even though the membrane is bulk depleted. Using the effect of elastic strain, we have fabricated two-dimensional electron gases (2DEGs) in membrane structures; we support the transport measurements with calculations suggesting that we are observing a single bound state in the well. We have fabricated thin-film transistors (TFTs) that we have transferred to flexible-polymer hosts that show a very high saturation current and transconductance. Thus very highspeed flexible electronics over large areas become possible

Published in:

Silicon Monolithic Integrated Circuits in RF Systems, 2006. Digest of Papers. 2006 Topical Meeting on

Date of Conference:

18-20 Jan. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.