By Topic

Distance distribution of binary codes and the error probability of decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barg, A. ; Dept. of Electr. & Comput. Eng., Maryland Univ., College Park, MD, USA ; McGregor, A.

We address the problem of bounding below the probability of error under maximum-likelihood decoding of a binary code with a known distance distribution used on a binary-symmetric channel (BSC). An improved upper bound is given for the maximum attainable exponent of this probability (the reliability function of the channel). In particular, we prove that the "random coding exponent" is the true value of the channel reliability for codes rate R in some interval immediately below the critical rate of the channel. An analogous result is obtained for the Gaussian channel.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 12 )