Cart (Loading....) | Create Account
Close category search window
 

FinFET-based SRAM design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zheng Guo ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Balasubramanian, S. ; Zlatanovici, R. ; Tsu-Jae King
more authors

Intrinsic variations and challenging leakage control in today's bulk-Si MOSFETs limit the scaling of SRAM. Design tradeoffs in six-transistor (6-T) and four-transistor (4-T) SRAM cells are presented in this work. It is found that 6-T and 4-T FinFET-based SRAM cells designed with built-in feedback achieve significant improvements in the cell static noise margin (SNM) without area penalty. Up to 2× improvement in SNM can be achieved in 6-T FinFET-based SRAM cells. A 4-T FinFET-based SRAM cell with built-in feedback can achieve sub-100pA per-cell standby current and offer the similar improvements in SNM as the 6-T cell with feedback, making them attractive for low-power, low-voltage applications.

Published in:

Low Power Electronics and Design, 2005. ISLPED '05. Proceedings of the 2005 International Symposium on

Date of Conference:

8-10 Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.