Cart (Loading....) | Create Account
Close category search window
 

A calibration method for odometry of mobile robots based on the least-squares technique: theory and experimental validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Antonelli, G. ; Dipt. di Automazione, Univ. degli Studi di Cassino, Italy ; Chiaverini, S. ; Fusco, G.

For a mobile robot, odometry calibration consists of the identification of a set of kinematic parameters that allow reconstructing the vehicle's absolute position and orientation starting from the wheels' encoder measurements. This paper develops a systematic method for odometry calibration of differential-drive mobile robots. As a first step, the kinematic equations are written so as to underline linearity in a suitable set of unknown parameters; thus, the least-squares method can be applied to estimate them. A major advantage of the adopted formulation is that it provides a quantitative measure of the optimality of a test motion; this can be exploited to drive guidelines on the choice of the test trajectories and to evaluate accuracy of a solution. The proposed technique has been experimentally validated on two different mobile robots and, in one case, compared with other existing approaches; the obtained results confirm the effectiveness of the proposed calibration method.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 5 )

Date of Publication:

Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.