Cart (Loading....) | Create Account
Close category search window
 

Coding for the degraded broadcast channel with random parameters, with causal and noncausal side information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Steinberg, Y. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa

In this work, coding for the degraded broadcast channel controlled by random parameters is studied. Two main paradigms are considered: where side information on the random parameters is provided to the transmitter in a noncausal manner (termed here noncausal coding), and where side information is provided in a causal manner (termed causal coding). Inner and outer bounds are derived on the capacity region with noncausal coding. For the special case where the nondegraded user is informed about the channel parameters, it is shown that the inner bound is tight, thus deriving the capacity region for that case. For causal coding, a single-letter characterization of the capacity region is derived. This characterization is expressed via auxiliary random variables (RVs), and can also be interpreted by means of Shannon strategies, as the formula for the capacity of the single-user channel with causal coding derived by Shannon. The capacity region of a class of binary broadcast channels with causal coding is computed, as an example. Applications to watermarking are suggested. In particular, the results on noncausal coding can be used to derive the capacity region of a watermarking system where the channel (attacker) is fixed, and the watermark is subject to several stages of attack, or a watermarking system where the encoder is required to encode watermarks for both private and public users

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 8 )

Date of Publication:

Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.