By Topic

Face detection technique based on intensity and skin color distribution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Gundimada ; Dept. of Electr. & Comput. Eng., Old Dominion Univ., Norfolk, VA, USA ; Li Tao ; V. Asari

A rotation invariant human face detection system in color images based on human skin color distribution and intensity is proposed in this paper. Skin color distribution typical to a human face is used as a feature along with the intensity variations to classify the candidate regions into faces and nonfaces. The detection process is carried out in YCbCr color space. Sparse Network of Winnows architecture is used to train three networks one for intensity and two for the color distributions for classification of candidate regions. Rotation invariance in detection of faces is achieved by training multiple classifiers, each to detect faces at a particular orientation. The detection process also implements a non linear luminance based lighting compensation method which is very efficient in enhancing and restoring the natural colors into the images which are taken in darker and varying lighting conditions. Experimental results show that the new face detection technique is highly efficient in terms of speed and accuracy in detecting frontal view faces at different orientations in complex environments.

Published in:

Image Processing, 2004. ICIP '04. 2004 International Conference on  (Volume:2 )

Date of Conference:

24-27 Oct. 2004