Cart (Loading....) | Create Account
Close category search window
 

Optimal power flow evaluation of distribution network capacity for the connection of distributed generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Harrison, G.P. ; Sch. of Eng. & Electron., Univ. of Edinburgh ; Wallace, A.R.

Distributed generation capacity will increase significantly as a result of UK Government-led targets and incentives. Whereas the technical problems arising from distribution-level connections may be mitigated for individual connections, the anticipated connection volumes imply a potential risk of conflict between connections, in that inappropriately sized or located plant could constrain further development of the network and consequently threaten the achievement of renewable energy targets. One means of addressing this risk is to encourage development at sites that are more suitable and at the same time discouraging those at inappropriate ones. First of all network operators must be able to evaluate the available capacity on the system (i.e. the headroom). A technique is presented that facilitates such an analysis. Termed `reverse load-ability', the approach models fixed-power factor distributed generation as negative loads and uses the optimal power flow to perform negative load shedding that effectively maximises capacity and identifies available headroom. The technique is applied to an extensive distribution and sub-transmission network. It rapidly identifies available headroom within the imposed thermal and voltage constraints. Furthermore, its use is demonstrated in examining the consequences of a sequence of connections in terms of the impact on available headroom and in sterilising the network

Published in:

Generation, Transmission and Distribution, IEE Proceedings-  (Volume:152 ,  Issue: 1 )

Date of Publication:

10 Jan. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.