Cart (Loading....) | Create Account
Close category search window
 

Iterative decoder-aided equalization of STANAG 4539 high data rate waveforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The area of digital communications has undergone a significant transformation in the last ten years due largely to the discovery of turbo codes. The "turbo" concept can be applied to more than just forward error-correction (FEC) schemes. For example, waveforms developed for the high frequency (HF) band typically place an interleaver between the FEC scheme and the transmitted symbols. The purpose of this interleaver is to decorrelate the errors caused by slow fading multipath channels encountered on HF. If no interleaver were used, most FEC schemes would become ineffective (e.g. convolutional codes). The "turbo" concept can be applied to HF waveforms which employ an interleaver by iteratively exchanging soft information between the equalizer and the FEC decoder. This paper investigates the possible performance improvements of applying this technique to a family of high data rate HF waveforms defined in NATO STANAG 4539. Different data rates and interleaver sizes are simulated on a variety of channels to determine the benefits. Instead of standard bit error rate performance curves, block error rate curves are provided since most modern day applications send groups of bits (packets) and expect each group to be received error free. Following this, latency and computational complexity are discussed to assess the feasibility and benefits of applying this technique to improve on-air performance of HF systems.

Published in:

HF Radio Systems and Techniques, 2003. Ninth International Conference on (Conf. Publ. No. 493)

Date of Conference:

23-26 June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.