Cart (Loading....) | Create Account
Close category search window
 

Frequency range of stable dielectric-barrier discharges in atmospheric He and N2

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xu Tao Deng ; Dept. of Electron. & Electr. Eng., Loughborough Univ., Leicestershire, UK ; Kong, M.G.

While there have been extensive studies of nonthermal atmospheric dielectric-barrier discharges (DBD), many key facets of their characteristics remain to be unraveled before their full understanding is achieved. One of the missing pieces in our current knowledge is the dependence of stable DBD production upon temporal characteristics of the applied voltage such as excitation frequency. In this contribution, we report a numerical investigation of the frequency range for the generation of stable DBD and that of likely mechanisms for disruption of DBD stability. We show that when the excitation frequency is too low, an irreversibly large mismatch of the rise-time occurs between the applied voltage and the memory voltage. It is demonstrated that this mismatch results in a rapid suppression of the gas voltage and as such, the generated DBD is quenched prematurely. Also, it is shown that when the excitation frequency is too high, most electrons produced in the plasma bulk become trapped in the interelectrode gap and are unable to reach the electrodes. As a result, the gas voltage increases without being contained adequately by a sizeable memory voltage. Again, this leads to premature plasma quenching. These observations highlight the importance of the dynamic balance between the applied voltage and the memory voltage in dielectric-barrier discharges. We compare the above issues in both a helium DBD and a nitrogen DBD and report that our findings of the two stability disruption mechanisms are generic in different DBD systems.

Published in:

Plasma Science, IEEE Transactions on  (Volume:32 ,  Issue: 4 )

Date of Publication:

Aug. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.