By Topic

An incremental genetic algorithm approach to multiprocessor scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wu, A.S. ; Sch. of Comput. Sci., Central Florida Univ., Orlando, FL, USA ; Yu, H. ; Jin, S. ; Kuo-Chi Lin
more authors

We have developed a genetic algorithm (GA) approach to the problem of task scheduling for multiprocessor systems. Our approach requires minimal problem specific information and no problem specific operators or repair mechanisms. Key features of our system include a flexible, adaptive problem representation and an incremental fitness function. Comparison with traditional scheduling methods indicates that the GA is competitive in terms of solution quality if it has sufficient resources to perform its search. Studies in a nonstationary environment show the GA is able to automatically adapt to changing targets.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:15 ,  Issue: 9 )