Cart (Loading....) | Create Account
Close category search window
 

Fast portscan detection using sequential hypothesis testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jaeyeon Jung ; Comput. Sci. & Artificial Intelligence Lab., MIT, USA ; Paxson, V. ; Berger, A.W. ; Balakrishnan, H.

Attackers routinely perform random portscans of IP addresses to find vulnerable servers to compromise. Network intrusion detection systems (NIDS) attempt to detect such behavior and flag these portscanners as malicious. An important need in such systems is prompt response: the sooner a NIDS detects malice, the lower the resulting damage. At the same time, a NIDS should not falsely implicate benign remote hosts as malicious. Balancing the goals of promptness and accuracy in detecting malicious scanners is a delicate and difficult task. We develop a connection between this problem and the theory of sequential hypothesis testing and show that one can model accesses to local IP addresses as a random walk on one of two stochastic processes, corresponding respectively to the access patterns of benign remote hosts and malicious ones. The detection problem then becomes one of observing a particular trajectory and inferring from it the most likely classification for the remote host. We use this insight to develop TRW (Threshold Random Walk), an online detection algorithm that identifies malicious remote hosts. Using an analysis of traces from two qualitatively different sites, we show that TRW requires a much smaller number of connection attempts (4 or 5 in practice) to detect malicious activity compared to previous schemes, while also providing theoretical bounds on the low (and configurable) probabilities of missed detection and false alarms. In summary, TRW performs significantly faster and also more accurately than other current solutions.

Published in:

Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium on

Date of Conference:

9-12 May 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.