By Topic

Linear upper bounds for random walk on small density random 3-CNFs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Alekhnovich ; Lab. for Comput. Sci., MIT, Cambridge, MA, USA ; E. Ben-Sasson

We analyze the efficiency of the random walk algorithm on random 3-CNF instances, and prove linear upper bounds on the running time of this algorithm for small clause density, less than 1.63. Our upper bound matches the observed running time to within a multiplicative factor. This is the first sub-exponential upper bound on the running time of a local improvement algorithm on random instances. Our proof introduces a simple, yet powerful tool for analyzing such algorithms, which may be of further use. This object, called a terminator, is a weighted satisfying assignment. We show that any CNF having a good (small weight) terminator is assured to be solved quickly by the random walk algorithm. This raises the natural question of the terminator threshold which is the maximal clause density for which such assignments exist (with high probability). We use the analysis of the pure literal heuristic presented by Broder, Frieze and Upfal and show that for small clause densities good terminators exist. Thus we show that the pure literal threshold (≈ 1.63) is a lower bound on the terminator threshold. One nice property of terminators is that they can be found efficiently, via linear programming. This makes tractable the future investigation of the terminator threshold, and also provides an efficiently computable certificate for short running time of the simple random-walk heuristic.

Published in:

Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on

Date of Conference:

11-14 Oct. 2003