By Topic

Handwritten Chinese character recognition: alternatives to nonlinear normalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheng-Lin Liu ; Central Res. Lab., Hitachi, Ltd., Tokyo, Japan ; Sako, H. ; Fujisawa, H.

Nonlinear normalization (NLN) by line density equalization has been popularly used in handwritten Chinese character recognition (HCCR). To overcome the intensive computation of local line density and the excessive shape distortion of NLN, we tested some alternative methods based on global transformation, including a moment-based linear transformation and two nonlinear methods based on quadratic curve fitting. The alternative methods are simpler in computation and the transformed images have more natural shapes. In experiments of HCCR on large databases, the alternative methods have yielded comparable or higher accuracies to the traditional NLN.

Published in:

Document Analysis and Recognition, 2003. Proceedings. Seventh International Conference on

Date of Conference:

3-6 Aug. 2003