By Topic

Grid workflow: a flexible failure handling framework for the grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soonwook Hwang ; Inf. Sci. Inst., Southern California Univ., Marina del Rey, CA, USA ; C. Kesselman

The generic, heterogeneous, and dynamic nature of the grid requires a new from of failure recovery mechanism to address its unique requirements such as support for diverse failure handling strategies, separation of failure handling strategies from application codes, and user-defined exception handling. We here propose a grid workflow system (grid-WFS), a flexible failure handling framework for the grid, which addresses these grid-unique failure recovery requirements. Central to the framework is flexibility by the use of workflow structure as a high-level recovery policy specification. We show how this use of high-level workflow structure allows users to achieve failure recovery in a variety of ways depending on the requirements and constraints of their applications. We also demonstrate that this use of workflow structure enables users to not only rapidly prototype and investigate failure handling strategies, but also easily change them by simply modifying the encompassing workflow structure, while the application code remains intact. Finally, we present an experimental evaluation of our framework using a simulation, demonstrating the value of supporting multiple failure recovery techniques in grid systems to achieve high performance in the presence of failures.

Published in:

High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on

Date of Conference:

22-24 June 2003