By Topic

Policy driven heterogeneous resource co-allocation with Gangmatching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Raman ; Wisconsin Univ., Madison, WI, USA ; M. Livny ; M. Solomon

Dynamic, heterogeneous and distributively owned resource environments present unique challenges to the problems of resource representation, allocation and management. Conventional resource management methods that rely on static models of resource allocation policy and behavior fail to address these challenges. We previously argued that Matchmaking provides an elegant and robust solution to resource management in such dynamic and federated environments. However, Matchmaking is limited by its purely bilateral formalism of matching a single customer with a single resource, precluding more advanced resource management services such as co-allocation. In this paper, we present Gangmatching, a multilateral extension to the Matchmaking model, and discuss the Gangmatching model and its associated implementation and performance issues in context of a real-world license management co-allocation problem.

Published in:

High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on

Date of Conference:

22-24 June 2003