Cart (Loading....) | Create Account
Close category search window
 

Trace-based simulations of processor co-allocation policies in multiclusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bucur, A.I.D. ; Fac. of Inf. Technol. & Syst., Delft Univ. of Technol., Netherlands ; Epema, D.H.J.

In systems consisting of multiple clusters of processors which employ space sharing for scheduling jobs, such as our Distributed ASCI (Advanced School for Computing Imaging) Supercomputer (DAS), co-allocation, i.e., the simultaneous allocation of processors to single jobs in multiple clusters, may be required. In this paper we study the performance of several scheduling policies for co-allocating unordered requests in multiclusters with a workload derived from the DAS. We find that beside the policy, limiting the total job size significantly improves the performance, and that for a slowdown of jobs due to global communication bounded by 1.25, co-allocation is a viable choice.

Published in:

High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on

Date of Conference:

22-24 June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.