By Topic

Silicon-based reconfigurable antennas-concepts, analysis, implementation, and feasibility

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
A. E. Fathy ; Sarnoff Corp., Princeton, NJ, USA ; A. Rosen ; H. S. Owen ; F. McGinty
more authors

We report on an innovative reconfigurable antenna concept with significant practical relevance based on the dynamic definition of metal-like conductive plasma channels in high-resistivity silicon that are activated by the injection of DC current. The plasma channels are precisely formed and addressed using current high-resolution silicon fabrication technology. These dynamically defined plasma-reconfigurable antennas enable frequency hopping, beam shaping, and steering without the complexity of RF feed structures. This concept shows promise for delivering the performance and capabilities of a phased array, but at a reduced cost. However, challenges such as p-i-n biasing circuit complexity and their nonlinearities, as well as antenna efficiency, would still require further investigations.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:51 ,  Issue: 6 )