By Topic

Taming heterogeneity - the Ptolemy approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
J. Eker ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; J. W. Janneck ; E. A. Lee ; Jie Liu
more authors

Modern embedded computing systems tend to be heterogeneous in the sense of being composed of subsystems with very different characteristics, which communicate and interact in a variety of ways-synchronous or asynchronous, buffered or unbuffered, etc. Obviously, when designing such systems, a modeling language needs to reflect this heterogeneity. Today's modeling environments usually offer a variant of what we call amorphous heterogeneity to address this problem. This paper argues that modeling systems in this manner leads to unexpected and hard-to-analyze interactions between the communication mechanisms and proposes a more structured approach to heterogeneity, called hierarchical heterogeneity, to solve this problem. It proposes a model structure and semantic framework that support this form of heterogeneity, and discusses the issues arising from heterogeneous component interaction and the desire for component reuse. It introduces the notion of domain polymorphism as a way to address these issues.

Published in:

Proceedings of the IEEE  (Volume:91 ,  Issue: 1 )