By Topic

The Thermal Response of a Human in the Near-Zone of a Resonant Thin-Wire Antenna

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The thermal response of a human in the near-zone of an antenna was determined by numerical procedures. The approach taken was to modify the heat transfer equations for man in air to account for thermal loading due to the energy absorbed from the radiating antenna. The absorbed power density distribution in the human body was determined by considering the body and antenna to be a coupled system in which the resulting system of equations were solved by moment method procedures. This information was then analyzed by a thermal response model consisting of a series of transient conduction equations with internal heat generation due to metabolism, internal convective heat transfer due to blood flow, external interaction by convection and radiation, and cooling of the skin by sweating and evaporation. Internal heating patterns were calculated for two cases: a human in the near-zone of a quarter-wave monopole and a half-wave dipole operating at 45 and 200 MHz, respectively. It was found that negligible heating occurred for antennas with input power levels of less than 50 W.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:30 ,  Issue: 2 )