Cart (Loading....) | Create Account
Close category search window
 

Algebraic theory of linear multivariable feedback systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Desoer, C.A. ; University of California, Berkeley, CA, USA ; Gustafson, C.

This paper presents an algebraic theory for analysis and design of linear multivariable feedback systems. The theory is developed in an algebraic setting sufficiently general to include, as special cases, continuous and discrete time systems, both lumped and distributed. Designs are implemented by construction of a controller with two vector inputs and one vector output. Use of controllers of this type is shown to generate convenient stability results, and convenient global parametrizations of all I/O maps and all disturbance-to-output maps achievable, for a given plant, by a stabilizing compensator. These parametrizations are then used to show that any such I/O map and any such disturbance-to-output map may be simultaneously realized by choice of an appropriate controller. In the special case of lumped systems, it is shown that the design theory. can be reduced to manipulations involving polynomial matrices only. The resulting design procedure is thus shown to be more efficient computationally. Finally, the problem of asymptotically tracking a class of input signals is considered in the general algebraic setting. It is shown that the classical results on asymptotic tracking can be generalized to this setting. Additionally, sufficient conditions for robustness of asymptotic tracking, and robustness of stability are developed.

Published in:

Automatic Control, IEEE Transactions on  (Volume:29 ,  Issue: 10 )

Date of Publication:

Oct 1984

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.