Cart (Loading....) | Create Account
Close category search window

Optical communication with two-photon coherent states--Part III: Quantum measurements realizable with photoemissive detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In Part I of this three-part study it was shown that the use of two-photon coherent state (TCS) radiation may yield siginificant performance gains in free-space optical communicatinn if the receiver makes a quantum measurement of a single field quadrature. In Part II it was shown that homodyne detection achieves the same signal-to-noise ratio as the quantum field quadrature measurement, thus providing a receiver which realizes the linear modulation TCS performance gain found in Part I. Furthermore, it was shown in Part il that ff homodyne detection does exactly correspond to the field quadrature measurement, then a large binary communication performance gain is afforded by homodyne detection of antipodal TCS signals. The full equivalence of honmdyne detection and single-quadrature field measurement, as well as that of heterodyne detection and two-quadrature field measurement, is established. Furthermore, a heterodyne configuration which uses a TCS image-band oscillator in addition to the usual coherent state local oscillator is studied. This coafiguration termed TCS heterodyne detection is shown to realize all the quantum measurements described by arbitrary TCS. The foregoing results are obtained by means of a representation theorem which shows that photoemissive detection realizes the photon flux density measurement.

Published in:

Information Theory, IEEE Transactions on  (Volume:26 ,  Issue: 1 )

Date of Publication:

Jan 1980

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.