By Topic

Genetic algorithm-based neural fuzzy decision tree for mixed scheduling in ATM networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chin-Teng Lin ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; I-Fang Chung ; Her-Chang Pu ; Tsern-Huei Lee
more authors

Future broadband integrated services networks based on asynchronous transfer mode (ATM) technology are expected to support multiple types of multimedia information with diverse statistical characteristics and quality of service (QoS) requirements. To meet these requirements, efficient scheduling methods are important for traffic control in ATM networks. Among general scheduling schemes, the rate monotonic algorithm is simple enough to be used in high-speed networks, but does not attain the high system utilization of the deadline driven algorithm. However, the deadline driven scheme is computationally complex and hard to implement in hardware. The mixed scheduling algorithm is a combination of the rate monotonic algorithm and the deadline driven algorithm; thus it can provide most of the benefits of these two algorithms. In this paper, we use the mixed scheduling algorithm to achieve high system utilization under the hardware constraint. Because there is no analytic method for schedulability testing of mixed scheduling, we propose a genetic algorithm-based neural fuzzy decision tree (GANFDT) to realize it in a real-time environment. The GANFDT combines a GA and a neural fuzzy network into a binary classification tree. This approach also exploits the power of the classification tree. Simulation results show that the GANFDT provides an efficient way of carrying out mixed scheduling in ATM networks.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:32 ,  Issue: 6 )