By Topic

Automatic generation of synthetic sequential benchmark circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. D. Hutton ; Dept. of Comput. Sci., Toronto Univ., Ont., Canada ; J. S. Rose ; D. G. Corneil

The design of programmable logic architectures and supporting computer-aided design tools fundamentally requires both a good understanding of the combinatorial nature of netlist graphs and sufficient quantities of realistic examples to evaluate or benchmark the results. In this paper, the authors investigate these two issues. They introduce an abstract model for describing sequential circuits and a collection of statistical parameters for better understanding the nature of circuits. Based upon this model they introduce and formally define the signature of a circuit netlist and the signature equivalence of netlists. They give an algorithm (GEN) for generating sequential benchmark netlists, significantly expanding previous work (Hutton et al, 1998) which generated purely combinational circuits. By comparing synthetic circuits to existing benchmarks and random graphs they show that GEN circuits are significantly more realistic than random graphs. The authors further illustrate the viabilty of the methodology by applying GEN to a case study comparing two partitioning algorithms.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:21 ,  Issue: 8 )