Cart (Loading....) | Create Account
Close category search window
 

Pattern routing: use and theory for increasing predictability and avoiding coupling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kastner, R. ; Dept. of Comput. Sci., California Univ., Los Angeles, CA, USA ; Bozorgzadeh, E. ; Sarrafzadeh, M.

Deep submicron effects, along with increasing interconnect densities, have increased the complexity of the routing problem. Whereas previously we could focus on minimizing wirelength, we must now consider a variety of objectives during routing. For example, an increased amount of timing restrictions means that we must minimize interconnect delay. But, interconnect delay is no longer simply related to wirelength. Coupling capacitance has become a dominant component of delay due to the shrinking of device sizes. Regardless, the most important objective is producing a routable circuit. Unfortunately, this often conflicts with minimizing interconnect delay as minimum delay routes create congested areas, for which an exact routing cannot be realized without violating design rules. In this work, we use the concept of pattern routing to develop algorithms that guide the router to a solution that minimizes interconnect delay - by considering both coupling and wirelength-without damaging the routability of the circuit. The paper is divided into two parts. The first part demonstrates that pattern routing can be used without affecting the routability of the circuit. We propose two schemes to choose a set of nets to pattern route. Using these schemes, we show that the routability is not hindered. The second part builds on the previous part by presenting a framework for coupling reduction using pattern routing. We develop theory and algorithms relating pattern routing and coupling. Additionally, we give suggestions on how to extend our theory and use our algorithms for both global and detailed routing

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:21 ,  Issue: 7 )

Date of Publication:

Jul 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.