By Topic

Simultaneous clustering and tracking unknown number of objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ishiguro, K. ; NTT Commun. Sci. Labs., Kyoto ; Yamada, T. ; Ueda, N.

In this paper, we present a novel on-line probabilistic generative model that simultaneously deals with both the clustering and the tracking of an unknown number of moving objects. The proposed model assumes that i) time series data are composed of a time-varying number of objects and that ii) each object is governed by a mixture of an unknown number of different patterns of dynamics. The problem of learning patterns of dynamics is formulated as the clustering of tracked objects based on a nonparametric Bayesian model with conjugate priors, and this clustering in turn improves the tracking. We present a particle filter for posterior estimation of simultaneous clustering and tracking. Through experiments with synthetic and real movie data, we confirmed that the proposed model successfully learned the hidden cluster patterns and obtained better tracking results than conventional models without clustering.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008