By Topic

Cross-Entropy Optimization of Control Policies With Adaptive Basis Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Busoniu, L. ; Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands ; Ernst, D. ; De Schutter, B. ; Babuska, R.

This paper introduces an algorithm for direct search of control policies in continuous-state discrete-action Markov decision processes. The algorithm looks for the best closed-loop policy that can be represented using a given number of basis functions (BFs), where a discrete action is assigned to each BF. The type of the BFs and their number are specified in advance and determine the complexity of the representation. Considerable flexibility is achieved by optimizing the locations and shapes of the BFs, together with the action assignments. The optimization is carried out with the cross-entropy method and evaluates the policies by their empirical return from a representative set of initial states. The return for each representative state is estimated using Monte Carlo simulations. The resulting algorithm for cross-entropy policy search with adaptive BFs is extensively evaluated in problems with two to six state variables, for which it reliably obtains good policies with only a small number of BFs. In these experiments, cross-entropy policy search requires vastly fewer BFs than value-function techniques with equidistant BFs, and outperforms policy search with a competing optimization algorithm called DIRECT.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:41 ,  Issue: 1 )