By Topic

Decentralized dynamic spectrum access for cognitive radios: cooperative design of a non-cooperative game

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Michael Maskery ; with the University of British Columbia, Department of Electrical and Computer Engineering, 2356 Main Mall, Vancouver, Canada, V6T 1Z4 (e-mail: {mikem, vikramk} ; Vikram Krishnamurthy ; Qing Zhao

We consider dynamic spectrum access among cognitive radios from an adaptive, game theoretic learning perspective. Spectrum-agile cognitive radios compete for channels temporarily vacated by licensed primary users in order to satisfy their own demands while minimizing interference. For both slowly varying primary user activity and slowly varying statistics of "fast" primary user activity, we apply an adaptive regret based learning procedure which tracks the set of correlated equilibria of the game, treated as a distributed stochastic approximation. This procedure is shown to perform very well compared with other similar adaptive algorithms. We also estimate channel contention for a simple CSMA channel sharing scheme.

Published in:

IEEE Transactions on Communications  (Volume:57 ,  Issue: 2 )