By Topic

Hierarchical simulation-based verification of Anton, a special-purpose parallel machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
J. P. Grossman ; D. E. Shaw Research, New York, 10036, USA ; John K. Salmon ; C. Richard Ho ; Douglas J. Ierardi
more authors

One of the major design verification challenges in the development of Anton, a massively parallel special-purpose machine for molecular dynamics, was to provide evidence that computations spanning more than a quadrillion clock cycles will produce valid scientific results. Our verification methodology addressed this problem by using a hierarchy of RTL, architectural, and numerical simulations. Block- and chip-level RTL models were verified by means of extensive co-simulation with a detailed C++ architectural simulator, ensuring that the RTL models could perform the same molecular dynamics computations as the architectural simulator. The output of the architectural simulator was compared to a parallelized numerical simulator that produces bitwise identical results to Anton, and is fast enough to verify the long-term numerical stability of computations on Anton. These explicit couplings between adjacent levels of the simulation hierarchy created a continuous verification chain from molecular dynamics to individual logic gates.

Published in:

Computer Design, 2008. ICCD 2008. IEEE International Conference on

Date of Conference:

12-15 Oct. 2008