By Topic

Using genetic programming for the induction of oblique decision trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Amin Shali ; Iran Univ. of Sci. & Technol., Tehran ; Mohammad Reza Kangavari ; Bahareh Bina

In this paper, we present a genetically induced oblique decision tree algorithm. In traditional decision tree, each internal node has a testing criterion involving a single attribute. Oblique decision tree allows testing criterion to consist of more than one attribute. Here we use genetic programming to evolve and find an optimal testing criterion in each internal node for the set of samples at that node. This testing criterion is the characteristic function of a relation over existing attributes. We present the algorithm for construction of the oblique decision tree. We also compare the results of our proposed oblique decision tree with the one of C4.5 algorithm.

Published in:

Machine Learning and Applications, 2007. ICMLA 2007. Sixth International Conference on

Date of Conference:

13-15 Dec. 2007